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Abstract

The propagation of Lamb waves in a homogeneous, transversely isotropic, piezothermoelastic plate
subjected to charge- and stress-free, thermally insulated or isothermal boundary conditions, is investigated.
Secular equations for the plate in closed form and isolated mathematical conditions for symmetric and
antisymmetric wave mode propagation in completely separate terms are derived. It is shown that motion of
purely transverse (SH) mode gets decoupled from rest of the motion and remains unaffected due to
piezoelectric, pyroelectric and thermal effects. At short wavelength limits, the secular equations for
symmetric and skew symmetric waves reduce to Rayleigh surface wave frequency equation, because a finite
plate in such situation behaves like a semi-infinite medium. The amplitudes of dilatation, temperature
change and electrical potential have also been computed during the symmetric and skew symmetric mode of
vibrations of the plate. Finally, numerical solution of various secular equations and other relevant relations
is carried out for cadmium-selenide (6mm class) material. The dispersion curves, attenuation coefficients
and amplitudes of dilatation, temperature change and electrical potential for symmetric and antisymmetric
wave modes are presented graphically in order to illustrate and compare the analytical results. The theory
and numerical computations are found to be in close agreement. The various wave characteristics are found
to be more stable and realistic in the presence of piezoelectric and pyroelectric effects than in the absence of
such effects, thereby making such materials more viable for practical applications and use.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Mindlin [1] first proposed a thermo-piezoelectricity theory. He also derived the governing
equations of a thermo-piezoelectric plate [2]. Nowacki [3–5] has explored the physical laws for the
thermo-piezoelectric materials. Chandrasekharaiah [6,7] has generalized Mindlin’s theory of
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thermo-piezoelectricity to account for the finite speed of propagation of thermal disturbances.
Several investigators [8–14] have studied the propagation of waves in plates, cylinders and general
three-dimensional bodies that are made of thermo-piezoelectric materials. Tauchert [15] has
recently applied thermo-piezoelectricity theory to composite plate. Tang and Xu [16] derived the
general dynamic equations, which include mechanical, thermal and electric effects, based on the
anisotropic composite laminated plate theory. They also obtained analytical dynamical solutions
for the case of general forces acting on a simply supported piezothermoelastic laminated plate and
harmonic responses to temperature variation and electric field have been examined as a special
case.
Recently, resurgent interest in Lamb waves was partially initiated by its application of

multisensors [17–19]. Schoch [20] derived the dispersion relation for leaky Lamb waves for an
isotropic plate immersed in an inviscid liquid. Incidentally, the dispersion equations also have an
interface wave solution whose velocity is slightly less than the bulk sound velocity in the liquid
and most of the energy is in the liquid. It is often called the Scholte wave after Scholte [21].
Watkins et al. [22] calculated the attenuation of Lamb waves in the presence of an inviscid liquid
using an acoustic impedance method. Wu and Zhu [23] studied the propagation of Lamb waves in
a plate bordered with inviscid liquid layers on both sides. The dispersion equations of this case
were derived and solved numerically. Zhu and Wu [24] derived the dispersion equations of Lamb
waves of a plate bordered with viscous liquid layer or half-space viscous liquid on both sides.
Numerical solutions of the dispersion equations related to sensing applications are obtained.
Sharma and Pathania [25] studied thermoelastic Lamb waves in a homogeneous isotropic plate
bordered with layers of inviscid liquid in the context of coupled theory of thermoelasticity.
The piezothermoelastic material response entails an interaction of three major fields, namely,

mechanical, thermal and electric in the macro-physical world. One of the applications of the
piezothermoelastic material is to detect the responses of a structure by measuring the electric
charge, sensing or to reduce excessive responses by applying additional electric forces or thermal
forces, actuating. If sensing and actuating can be integrated smartly, a so-called intelligent
structure can be designed. The piezoelectric materials are also often used as resonators whose
frequencies need to be precisely controlled. Because of the coupling between the thermoelastic and
pyroelectric effects, it is important to quantify the effect of heat dissipation on the propagation of
wave at low and high frequencies. Yang and Batra [26] studied the effect of heat conduction on
shift in the frequencies of a freely vibrating linear piezoelectric body with the help of two
perturbation methods. It is shown that the first order effect on frequencies is to shift them by a
small imaginary number, thereby signifying that the effect of energy dissipation due to heat
conduction is to reduce the amplitude of vibration. Sharma and Kumar [27] have studied the
propagation of plane harmonic waves in piezothermoelastic materials. No problem which
analyses the propagation of Lamb-type waves in piezothermoelastic materials analytically is
available in the literature as per the knowledge of authors.
In the present paper, an attempt has been made to investigate the propagation of Lamb waves

in piezothermoelastic, transversely isotropic elastic plate that is subjected to stress- and charge-
free, thermally insulated/isothermal boundary conditions. The Rayleigh Lamb-type dispersion
relations have been obtained in both the cases, for symmetric and skew symmetric modes of
wave propagation in the plate. The dilatation, electric potential and temperature change are
also computed. The analytical results have been verified and computed numerically for
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cadmium-selenide (Cd Se) material plate, which are found to be in close agreement with the
analytical results.

2. Formulation of the problem

We consider an infinite homogeneous, transversely isotropic, piezothermoelastic plate of
thickness ‘2d’ initially at uniform temperature T0 and electric potential f0: We take origin of the
co-ordinate system ðx1;x2;x3Þ on the middle surface of the plate. The x1 � x2 plane is chosen to
coincide with middle surface and x3-axis normal to it along the thickness. The surfaces x3 ¼ 7d

are subjected to different boundary conditions. We take x1 � x3 as the plane of incidence and
assume that the solutions are explicitly independent of x2 but implicit dependence is there, so that
the component u2 of displacement vector is non-vanishing. The basic governing equations for
homogeneous transversely isotopic piezothermoelasticity, in the absence of charge density, heat
sources and body forces, are given by

c11u1;11 þ c44u1;13 þ ðc13 þ c44Þu3;13 þ ðe15 þ e31Þf;13 � b1T;1 ¼ r .u1; ð1Þ

c66u2;11 þ c44u2;33 ¼ r .u2; ð2Þ

ðc13 þ c44Þu1;13 þ c44u3;11 þ c33u3;33 þ e15f;11 þ e33f;33 � b3T;3 ¼ r .u3; ð3Þ

ðe15 þ e31Þu1;13 þ e15u3;11 þ e33u3;33 � E11f;11 � E33f;33 þ p3T;3 ¼ 0; ð4Þ

K11T;11 þ K33T;33 � rCe
’T ¼ T0 b1 ’u1;1 þ b3 ’u3;3 � p3 ’f;3

� �
; ð5Þ

where

b1 ¼ ðc11 þ c12Þa1 þ c13a3; b3 ¼ 2c13a1 þ c33a3:

a1; K11 are coefficients of linear thermal expansion and thermal conductivity, respectively, in the
direction orthogonal to the axes of symmetry, a3;K3 the corresponding quantities along the axis of
symmetry; r; Ce are, respectively, the density and specific heat at constant strain, cij are the
isothermal elastic parameters, eij are the piezoelectric constants, E11 and E33 are electric
permittivities and p3 is pyroelectric constant. Here the superposed dot denotes time differentiation
and coma notation is used for spatial derivatives. In Eqs. (1)–(5), ~uu ¼ ðu1; u2; u3Þ is the
displacement vector, f is the electric potential and Tðx1; x2;x3; tÞ is the temperature change.
Eqs. (1)–(5) can be written in non-dimensional form as

u1;11 þ c2u1;33 þ c3u3;13 þ Epe1f;13 � T;1 ¼ .u1; ð6Þ

c2u2;33 þ c4u2;11 ¼ .u2; ð7Þ

c3u1;13 þ c2u3;11 þ c1u3;33 þ Epðe2f;11 þ f;33Þ � %bT;3 ¼ .u3; ð8Þ

e1u1;13 þ e2u3;11 þ u3;33 � EZð%Ef;11 þ f;33Þ þ pT;3 ¼ 0; ð9Þ

T;11 þ %KT;33 � ’T ¼ E½ ’u1;1 þ %b ’u3;3 � Epp ’f;3�; ð10Þ
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where we have defined the following quantities:

x0
i ¼

onxi

vP

; t0 ¼ ont; u0
i ¼

ronvpui

b1T0
; T 0 ¼

T

T0
; f0 ¼

f
f0

; on ¼
Cec11

K11
; E ¼

T0b
2
1

rCec11
;

vP ¼
ffiffiffiffiffiffi
c11

r

r
; p ¼

p3c11

b1e33
; c1 ¼

c33

c11
; c2 ¼

c44

c11
; c3 ¼

c13 þ c44

c11
; c4 ¼

c11 � c12

2c11
;

e1 ¼
e15 þ e31

e33
; e2 ¼

e15

e33
; %E ¼

E11
E33

; EP ¼
one33f0

vPb1T0
; EZ ¼ Z3EP;

Z3 ¼
E33c11

e233
; o0 ¼

o
on

; c0 ¼
c

vP

; d 0 ¼
ond

vP

; h0 ¼
hvP

on
;

x0 ¼
xvP

on
; s0ij ¼

sij

b1T0
; %b ¼

b3
b1
; %K ¼

K33

K11
: ð11Þ

Here E is the thermoelastic coupling constant, on is the characteristic frequency of the medium,
Ep is the piezothermoelastic coupling constant and vP is the longitudinal wave velocity in the
medium. The primes have been suppressed for convenience.

2.1. Boundary conditions

The non-dimensional boundary conditions at the surfaces x3 ¼ 7d of the plate are given by

(i) Mechanical conditions (stress-free surfaces)

s33 ¼ 0; s13 ¼ 0; s23 ¼ 0: ð12:1Þ

(ii) Thermal conditions

T;3 þ hT ¼ 0; ð12:2Þ

where h is the surface heat transfer coefficient. Here h-0 corresponds to thermally insulated
boundaries and h-N refers to isothermal surfaces.

(iii) Electrical conditions (charge free surfaces)

D3 ¼ 0 ð12:3Þ

for charge-free surfaces and where D3 is the electrical displacement.

3. Solution of the problem

We assume solution of the form

ðu1; u2; u3;f;TÞ ¼ ð1; %u2;V ;W ;SÞU exp½ixðx1 sin yþ mx3 � ctÞ�; ð13Þ

where x is the wave number, o is the angular frequency and c ¼ o=x is the phase velocity of the
wave. Here y is the angle of inclination of wave normal with axes of symmetry (x3-axis), m is still
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an unknown parameter which signifies the penetration depth of the wave; %u2; V, W and S are,
respectively, the amplitude ratios of displacements u2; u3 electric potential f and temperature T to
that of displacement u1: The use of Eq. (13) in Eqs. (6)–(10) leads to a system of the following
coupled equations for the amplitudes ½1;V ;W ;S; %u2�T:

s2 þ c2m
2 � c2 c3ms Epe1ms �s 0

c3ms c2s
2 þ c1m

2 � c2 Epðe2s2 þ m2Þ � %bm 0

e1ms e2s
2 þ m2 �EZð%Es2 þ m2Þ pm 0

c2Es c2E %bm �c2EEppm c2 þ zðs2 þ %Km2Þ 0

0 0 0 0 c2m
2 þ c4s

2 � c2

2
6666664

3
7777775

1

V

W

S

%u2

2
6666664

3
7777775

¼

0

0

0

0

0

2
6666664

3
7777775
; ð14Þ

where z ¼ io; s ¼ sin y: The system of Eq. (14) has a non-trivial solution if the determinant of
coefficients of ½1;V ;W ;S; %u2�T vanishes, which leads to the following polynomial characteristic
equation:

m8 þ a1 þ
s2

%K
þ

Fc2

z %K

� �
m6 þ a2 þ a1

s2

%K
þ

Fc2

%Kz
A1

� �
m4 þ a3 þ a2

s2

%K
þ

Fc2

%Kz
A2

� �
m2

þ a3
s2

%K
þ

Fc2A3

%Kz

� �
¼ 0; ð15Þ

c2m
2 þ c4s

2 � c2 ¼ 0; ð16Þ

where the coefficients ai and Ai; i ¼ 1; 2; 3 are given in the appendix. Eq. (16) corresponds to
purely transverse (SH) wave mode that decoupled from rest of the motion and is not effected by
either of the thermal variations, pyroelectric or piezoelectric effects and hence will not be
considered in the following analysis. Eq. (15) being a biquadratic in m2 admits eight solutions for
m which also have the property m2 ¼ �m1;m4 ¼ �m3;m6 ¼ �m5;m8 ¼ �m7:
For each mq; q ¼ 1; 3; :::; 8; the amplitude ratios V, W, and S can be expressed as

Vq ¼ R1ðmqÞ=RðmqÞ; Wq ¼ R2ðmqÞ=RðmqÞ; Sq ¼ R3ðmqÞ=RðmqÞ; ð17Þ

where RðmqÞ and RiðmqÞ; i ¼ 1; 2; 3 are given in the appendix. Combining Eq. (17) with stress,
strain, electric displacement and temperature relation given below,

s33 ¼ ðc3 � c2Þu1;1 þ c1u3;3 þ EPf;3 � %bT ;

s13 ¼ c2ðu1;3 þ u3;1Þ þ EPe2f;1; D3 ¼ ðe1 � e2Þu1;1 þ u3;3 � EZf;3 þ pT ; ð18Þ
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we rewrite the formal solution for displacements, temperature and electric potential, as

ðu1; u3;f;TÞ ¼
X8
q¼1

ð1;Vq;WqSqÞUq exp½ixðx1 sin yþ mx3 � ctÞ�: ð19Þ

The stresses, electric displacement and temperature gradient are obtained as

ðs33;s13;D3;T;3Þ ¼
X8
q¼1

ixðD1q;D2q;D3q;mqSqÞUqe
ixðx1 sin yþx3mq�ctÞ; ð20Þ

where

D1q ¼ ðc3 � c2Þ sin yþ c1mqVq þ EpmqWq �
%b
ix

Sq; ð21:1Þ

D2q ¼ c2mq þ c2 sin y Vq þ Epe2 sin y Wq; ð21:2Þ

D3q ¼ ðe1 � e2Þ sin yþ mqVq � EZmqWq þ
p

ix
Sq; q ¼ 1; 2; 3;y; 8: ð21:3Þ

4. Derivation of the secular equations

We consider two types of thermal boundary condition of the plate namely, isothermal
boundaries and thermally insulated boundaries.

4.1. Stress- and charge-free, isothermal boundary conditions (h-N)

By invoking stress-free, isothermal and electrically charge-free boundary conditions (12.1),
(12.2) and (12.3) at the plate surfaces x3 ¼ 7d; we obtain a system of eight simultaneous linear
equations in amplitudes Uq; q ¼ 1; 2;y; 8 as

X8
q¼1

D1qEqUq ¼ 0;
X8
q¼1

D2qEqUq ¼ 0;
X8
q¼1

D3qEqUq ¼ 0;
X8
q¼1

D4qEqUq ¼ 0; ð22Þ

where D4q ¼ ðmq þ hÞSq and Eq ¼ e7ixmqd ; q ¼ 1; 2; 3:::8 system of Eqs. (22) have a non-trivial
solution if the determinant of the coefficients of Uq; q ¼ 1; 2;y; 8 vanishes, which leads to a
characteristic equation for the propagation of modified guided waves in the plate. The
characteristic equation for the piezothermoelastic waves in this case after applying lengthy
algebraic reductions and manipulations leads to the following secular equations:

T1

T5

� �71

�
D23G3

D21G1

T3

T5

� �71

�
D27G7

D21G1

T7

T5

� �71

¼
�D25G5

D21G1
; ð23Þ

where

T1 ¼ tanðgm1Þ; T3 ¼ tanðgm3Þ; T5 ¼ tanðgm5Þ; T7 ¼ tanðgm7Þ; g ¼ xd; ð24Þ
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G1 ¼

D13 D15 D17

D33 D35 D37

D43 D45 D47

�������
�������; G3 ¼

D11 D15 D17

D31 D35 D37

D41 D45 D47

�������
�������; G5 ¼

D11 D13 D17

D31 D33 D37

D41 D43 D47

�������
�������;

G7 ¼

D11 D13 D15

D31 D33 D35

D41 D43 D45

�������
�������: ð25Þ

Here D4q ¼ Sq and D1q; D2q; D3q are defined in Eqs. (21.1)–(21.3). In Eq. (23) the superscript �1
corresponds to symmetric and +1 refers to antisymmetric modes of wave propagation in the
plate.

4.2. Stress and charge free, thermally insulated boundary conditions (h-0)

Upon invoking the stress-free, and electrically charge-free, thermally insulated boundary
conditions (12.1), (12.2) and (12.3) at x3 ¼ 7d; we obtain the secular equations

G57

G37

T1T3

T5

� �71

þ
G35

G37

T1T7

T5

� �71

þ
G15

G37

T3T7

T5

� �71

¼ � T71
1 þ

G17

G37
T71
3 þ

G13

G37
T71
7

� �
; ð26Þ

where

G13 ¼ ðD11D33 � D31D13ÞðD25D47 � D27D45Þ; G57 ¼ ðD15D37 � D35D17ÞðD21D43 � D23D41Þ;

G15 ¼ ðD11D35 � D31D15ÞðD27D43 � D23D47Þ; G37 ¼ ðD13D37 � D33D17ÞðD25D41 � D21D45Þ;

G17 ¼ ðD11D37 � D31D17ÞðD23D45 � D25D43Þ; G35 ¼ ðD13D35 � D33D15ÞðD21D47 � D27D41Þ:

ð27Þ

Here D4q ¼ mqSq and D1q; D2q; D3q are defined in Eqs. (21.1)–(21.3).
Secular equations (23) and (26) are the transcendental equations which contain complete

information about the phase velocity, wave number and attenuation coefficient of the plate waves.
In general, wave number and hence the phase velocity of the waves is a complex quantity;
therefore the waves are attenuated in space. If we write

c�1 ¼ v�1 þ io�1q; ð28Þ

where v and q are real; the exponent in the plane wave solution (13) becomes

�qðx1 sin yþ mx3Þ � io v�1ðx1 sin yþ mx3Þ � t
� �

: ð29Þ

This shows that v is the propagation velocity and q is the attenuation coefficient of the
wave. Upon using Eq. (28) in Eqs. (23) and (26), the values of v and q for different modes can
be obtained.
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5. Special cases

5.1. Uncoupled thermoelasticity (piezoelectricity)

If we set E ¼ 0 ¼ p; the motion corresponding to the thermal wave (T-mode) decouples from
rest of the motion and the various results reduce to those of piezoelectric elastic plate. Secular
equations (23) and (26) for symmetric and skew symmetric modes for rest of the motion under
various boundary conditions take the following forms:

T1

T5

� �71

�
D0

23F3

D0
21F1

T3

T5

� �71

¼ �
D0

25F5

D0
21F1

; ð30Þ

F1 ¼ D0
13D

0
35 � D0

33D
0
15; F3 ¼ D0

11D
0
35 � D0

31D
0
15; F5 ¼ D0

11D
0
33 � D0

31D
0
13;

where

D0
1q ¼ ðc3 � c2Þsin yþ c1mqV 0

q þ mqW 0
q;

D0
2q ¼ c2mq þ c2 sin yV 0

q þ e2 sin yW 0
q;

D0
3q ¼ ðe1 � e2Þsin yþ mqV 0

q � Z3mqW 0
q;

V 0
q ¼ �R0

1ðmqÞ=R0ðmqÞ; W 0
q ¼ R0

2ðmqÞ=R0ðmqÞ; ð31Þ

R0
1ðmqÞ ¼ c2e3m

4
q þ ðe3 þ c2e2 � e1c3Þs2 � e3c

2
� �

m2
q þ e2s

2ðs2 � c2Þ
h i

;

R0
2ðmqÞ ¼ c1c2m

4
q þ ðPs2 � Jc2Þm2

q þ ðs2 � c2Þðc2s2 � c2Þ;

R0ðmqÞ ¼ mqs ðc3e3 � c1e1Þm2
q þ ðc3e2 � e1c2Þs2 þ e1c

2
h i

: ð32Þ

Here mq; q ¼ 1; 2; 3; 4; 5; 6; are the roots of the equation

m6 þ a1m
4 þ a2m

2 þ a3 ¼ 0; ð33Þ

where a1; a2; a3 are defined in the appendix.

5.2. Thermoelastic plate

In the absence of piezoelectricity, we set EP ¼ 0 ¼ p; the various results reduce to those of stress-
free thermoelastic plate. The secular equations (23) and (26) for symmetric and skew symmetric
modes for rest of the motion under various boundary conditions take the following forms:

T1

T5

� �71

�
D	

27G
	
7

D	
21G

	
1

T3

T5

� �71

¼ �
D	

25G
	
5

D	
21G

	
1

; ð34Þ

where

G	
1 ¼ D	

15D
	
47 � D	

17D
	
45; G	

5 ¼ D	
11D

	
47 � D	

17D
	
41; G	

7 ¼ D	
11D

	
45 � D	

15D
	
41;

D	
1q ¼ ðc3 � c2Þsin yþ c1mqV	

q � %bSq=ix;

D	
2q ¼ c2mq þ c2 sin y V	

q ; ð35Þ
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D	
4q ¼

S	
q for isothermal;

mqS	
q for thermally insulated;

(

V	
q ¼

mqaq=sin y; q ¼ 1; 2; 7; 8;

�sin y=mqaq; q ¼ 5; 6;

(

S	
q ¼

½ðc2 þ c3aqÞm2
q þ s2 � c2�=s; q ¼ 1; 2; 7; 8;

½c2m2
q þ ð1� c3=aqÞs2 � c2�=s; q ¼ 5; 6;

(
ð36Þ

aq ¼ %b
½c2m2

q þ ð1� c3= %bÞs2 � c2�

ðc1 � c3 %bÞm2
q þ c2s2 � c2

:

Here mq; q ¼ 1; 2; 5; 6; 7; 8; are the roots of the equation obtained by equating to zero the
determinant of Eq. (14) after ignoring the third and fifth rows and columns. Eq. (34) has been
solved and discussed in detail by Sharma [28] for isotropic materials.

5.3. Stress-free elastic plate

In the absence of piezoelectric, pyroelectric and thermal effects, the secular equations (23) and
(26) reduce to

T1

T5
¼

D00
15D

00
21

D00
11D

00
25

� �71

; ð37Þ

where D00
1q ¼ ðc3 � c2Þsin yþ c1mqV 00

q ; D00
2q ¼ c2ðmq þ sin y V 00

q Þ; q ¼ 1; 5;

V 00
q ¼ �

c3mqs

c1m2
q þ c2s2 � c2

¼ �
c2m

2
q þ s2 � c2

c3mqs
; q ¼ 1; 5:

Here the roots m1 and m5 are given by

m2
1 þ m2

5 ¼
�ðPs2 � Jc2Þ

c1c2
; m2

1m
2
5 ¼

ðs2 � c2Þðc2s2 � c2Þ
c1c2

:

6. Waves at short wavelength

Some information on the asymptotic behavior is obtainable by letting x-N: If we take,
x > o=

ffiffiffiffi
c2

p
; it follows that x > o and co1; then we replace m1; m3; m5 and m7 in the secular

equations by im0
1; im

0
3; im

0
5 and im0

7; respectively. Hence for x-N;

tanhðgm1Þ
tanhðgm5Þ

-1;
tanhðgm3Þ
tanhðgm5Þ

-1;
tanhðgm7Þ
tanhðgm5Þ

-1;
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so that the secular equations (23), (26), (30), (34) and (37), respectively, for both symmetric and
antisymmetric cases reduce to

D21G1 � D23G3 þ D25G5 � D27G7 ¼ 0; ð38:1Þ

G13 þ G15 þ G17 þ G35 þ G37 þ G57 ¼ 0; ð38:2Þ

D0
21F1 � D0

23F3 þ D0
25F5 ¼ 0; ð38:3Þ

D	
21G

	
1 þ D	

25G
	
5 � D	

27G
	
7 ¼ 0; ð38:4Þ

D00
11D

00
25 � D00

15D
00
21 ¼ 0: ð38:5Þ

Eqs. (38.1)–(38.5)) are merely Rayleigh surface wave equations in piezoelectric elasticity for
stress- and charge-free, thermally insulated or isothermal surfaces of the plate and in
elastokinetics, respectively. The Rayleigh results enter here since, for such small wavelengths,
the finite thickness plate appears as a semi-infinite medium. Hence vibration energy is transmitted
mainly along the surface of the plate.

7. Amplitudes of dilatation, temperature change and electric potential

The amplitudes of dilatation, electric potential and temperature during symmetric mode of
vibration are obtained as

e ¼
@u1

@x1
þ

@u3

@x3

� �
¼ c01ðsin yþ m1V1Þ þ Lc03ðsin yþ m3V3Þ þ Mc05ðsin yþ m5V5Þ þ Nc07ðsin yþ m7V7Þ
� �

 A1ðixÞeixðx1 sin y�ctÞ; ð39:1Þ

f ¼ W1c
0
1 þ W3Lc03 þ W5Mc05 þ W7Nc07

� �
A1ðixÞeixðx1 sin y�ctÞ; ð39:2Þ

T ¼ S1c
0
1 þ S3Lc03 þ S5Mc05 þ S7Nc07

� �
A1ðixÞeixðx1 sin y�ctÞ; ð39:3Þ

where L; M; and N are given below.

L ¼ D11c
	
1ðD25D37s

	
5c

	
7 � D35D27c

	
5s

	
7Þ � D15c

	
5ðD21D37s

	
1c

	
7 � D31D27c

	
1s

	
7Þ

�
þD17c

	
7ðD21D35s

	
1c

	
5 � D31D25c

	
1s

	
5Þ
�
=D;

M ¼ D13c
	
3ðD21D37s

	
1c

	
7 � D31D27c

	
1s

	
7Þ � D11c

	
1ðD23D37s

	
3c

	
7 � D33D27c

	
3s

	
7Þ

�
þD17c

	
7ðD23D31s

	
3c

	
1 � D33D21c

	
3s

	
1Þ
�
=D;

N ¼ D13c
	
3ðD25D31s

	
5c

	
1 � D35D21c

	
5s

	
1Þ � D15c

	
5ðD23D31s

	
3c

	
1 � D33D21c

	
3s

	
1Þ

�
þD11c

	
1ðD23D35s

	
3c

	
5 � D33D25c

	
3s

	
5Þ
�
=D;

D ¼ � D13c
	
3ðD25D37s

	
5c

	
7 � D35D27c

	
5s

	
7Þ � D15c

	
5ðD23D37s

	
3c

	
7 � D33D27c

	
3s

	
7Þ

�
þD17c

n

7ðD23D35s
	
3c

	
5 � D33D25c

	
3s

	
5Þ
�
;

c	q ¼ cos xmqd; s	q ¼ sin xmqd; c0q ¼ cos xmqx3; s0q ¼ sin xmqx3; q ¼ 1; 2; 3;y; 8:
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The amplitudes of dilatation, electric potential and temperature change for antisymmetric mode
of vibration are obtained from Eqs. (39.1)–(39.3) by interchanging c0q with s0q and L; M; N with
L0; M 0; N 0; respectively, where L0; M 0; N 0 are obtained from L; M; N by replacing c	q with s	q:

8. Numerical results and discussion

The material chosen for the purpose of numerical calculations is (6mm class) cadmium selenide
(CdSe) of hexagonal symmetry, which is transversely isotropic material. The physical data for a
single crystal of CdSe material is given as

c11 ¼ 7:41
 1010 Nm�2; c12 ¼ 4:52
 1010 Nm�2; c13 ¼ 3:93
 1010 Nm�2;

c33 ¼ 8:36
 1010 Nm�2; c44 ¼ 1:32
 1010 Nm�2; b1 ¼ 0:621
 106 NK�1 m�2;

b3 ¼ 0:551
 106 NK�1 m�2; e13 ¼ �0:160 Cm�2; e33 ¼ 0:347 Cm�2;

e51 ¼ �0:138 Cm �2; E11 ¼ 8:26
 10�11 C2 N�1 m�2; E33 ¼ 9:03
 10�11 C2 N�1 m�2;

Ce ¼ 260 J kg�1K�1; p3 ¼ �2:94
 10�6 CK�1m�2; Yr ¼ 4:48
 1010 Nm�2;

ar ¼ 4:4
 10�6 K�1; a1 ¼ 3:92
 10�12 CN�1; K1 ¼ K3 ¼ 9Wm�1 K�1;

r ¼ 5504 kgm�3; T0 ¼ 298K; o	 ¼ 2:14
 1013 s�1:

The secular equations (23) and (26) are solved numerically by the iteration method to obtain the
phase velocity of symmetric and antisymmetric modes of vibrations after finding the roots
mi; i ¼ 1; 2; 3;y; 8 of the biquadratic equation (15) by using Descartes’ method. In general,
Eq. (15) is of the form Gðm; s; cÞ ¼ 0: Eq. (15) can be solved for ‘m’ by Descartes method for fixed
values of c and s: The secular equations (23) and (26) are transcendental equations of the form
Fðc;mÞ ¼ 0: For known values of m, this equation can also be solved for the phase velocity c: We
have used iteration method to find the phase velocity for different values of wave number x and
the procedure adopted is outlined below.
The iteration method to solve a transcendental equation f ðcÞ ¼ 0; requires to put this equation

into the form c ¼ gðcÞ; so that the sequence cnf g of iteration for the desired root can be easily
generated as follows: If c0 be the initial approximation to the root, then we have c1 ¼ gðc0Þ; c2 ¼
gðc1Þ; c3 ¼ gðc3Þ and so on. In general, cnþ1 ¼ gðcnÞ; n ¼ 0; 1; 2; 3;y: If jg0ðcÞj51; for all cAI ;
then the sequence cnf g of approximations to the root will converge to the actual value c ¼ z of the
root, provided c0AI ; I being the interval in which root is expected. For initial value of c ¼ c0AI
and along direction ‘y’, Eq. (15) can be solved for m by Descartes’ method for a particular value of
the non-dimensional wave number xd: The values of m are then used in the secular equation to
obtain a current value of c; which is further used to generate a new approximation to c: This
process is repeated time and again for a particular value of the wave number xd; unless the
sequence of iterated approximations to the value of c converges to desired level of accuracy, i.e.,
cnþ1 � cnj joe; e being an arbitrary small number to be selected at random in order to achieve the
accuracy level. This procedure is continuously repeated for different values of the non-
dimensional wave number xd to obtain the phase velocity. Here, the sequence of the values of
phase velocity has been allowed to iterate approximately for 100 iterations to make it converge in
order to achieve the desired level of accuracy, viz. four decimal places. An infinite number of roots
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exist for a given value of frequency, which can be obtained by giving a value of wave number,
from the secular equations (23) and (26). Each root represents a propagating mode. Note that care
must be taken in the root-finding procedure, for the transcendental functions change their values
rapidly. The phase velocity ðv=

ffiffiffiffi
c2

p
Þ profiles of the first three symmetric and antisymmetric modes

of vibrations have been computed for various values of the non-dimensional wave number ðxdÞ
from dispersion relations (23) and (26) in case of charge-free, thermally insulated/isothermal,
stress-free plate of CdSe material. The corresponding dispersion curves and attenuation
coefficient profiles for Rayleigh–Lamb-type modes are presented in Figs. 1–8, respectively. The
amplitudes of dilatation, temperature and electric potential change in the case of fundamental
mode have also been computed for charge- and stress-free isothermal plate in various direc-
tions ðy ¼ 300; 450; 600; 750Þ of propagation. These quantities are plotted with plate thickness in
Figs. 9–14.
From Figs. 1 and 2, the velocity profiles of fundamental symmetric and skew symmetric modes

for y ¼ 75� in both isothermal and thermally insulated plates are noticed to be almost straight
lines, indicating that these are nearly non-dispersive along this direction of propagation. All the
modes show dispersive behavior in other considered directions of wave propagation. It is also seen
that there are crossover points between various curves corresponding to the same mode in
different directions of propagation. The crossover phenomenon physically indicates that at a
particular wavelength, the mechanical/thermal/electrical energy may be exchangeable between the
corresponding directions of wave propagation in the same mode. However, unlike elastic,
thermoelastic and piezoelectric plate cases where the symmetric and skew symmetric modes are
clearly distinguishable, it is no longer possible to very clearly define the symmetric and skew
symmetric modes in a piezothermoelastic plate. It can be seen that as the wave number increases,
the phase velocity of each mode decreases in all the directions of wave propagation. When wave
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number becomes indefinitely large, the curves asymptotically approach to the Rayleigh wave
velocity, because in such a situation a finite thickness plate behaves like a half-space and the
transportation of energy takes place mainly across the free surface of the plate. For the low wave
number, it is noticed that the phase velocity of the lowest mode in piezothermoelastic plate follows
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closely that of the rotational wave speed of CdSe material. Except the fundamental mode, all
higher modes have phase velocities greater than the shear wave speed in the considered range of
wave number along all the directions of wave propagation. It is also observed that as the thickness
of the piezothermoelastic plate increases, the phase velocity decreases in all the directions of wave
propagation. This can be explained by the fact that as the thickness of the plate increases, the
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coupling effect of various interacting fields also increases resulting in lower phase velocity. It can
also be observed that the Rayleigh wave velocity is reached at a lower wave number as the
thickness increases, because the transportation of energy mainly takes place in the neighbourhood
of the free surfaces of the plate in this case. From Figs. 3 and 4 for y ¼ 75�; it is noticed that there

ARTICLE IN PRESS

0

2

4

6

8

10

12

A
tte

nu
at

io
n 

co
ef

fic
ie

nt
30

45

60

75

Non dimensional wave number

0 321 7654 8 9

Fig. 8. Variation of attenuation coefficient of skew symmetric mode of wave propagation with non-dimensional wave

number in various directions (piezoelectric thermally insulated plate).

0

50

100

150

200

250

300

350

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Non dimensional plate thickness

N
on

 d
im

en
si

on
al

 d
ila

ta
tio

n

30

45

60

75

Fig. 9. Variation of symmetric dilatation with plate thickness in various directions.

J.N. Sharma, M. Pal / Journal of Sound and Vibration 270 (2004) 587–610602



is almost negligible change in the behavior of fundamental (acoustical) and higher (optical) modes
of propagation to that seen from Figs. 1 and 2 in this direction of propagation. Although
significant changes and shifts are observed in the mode shapes along the other considered
directions of propagation, the most effected velocity profiles are the one along y ¼ 30� and
y ¼ 45� in this case. Thus, the effect of isothermal and thermally insulated boundaries of plate is
also observed to be significant in CdSe material. The presence of dips in various curves shows the
existence of damping phenomenon, which is noticed to be more prominent for 0oyp45� than for
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45�pyo90�: However, the damping effect is quite significant along the directions for which y
satisfies the inequalities 30�pyp45�: No such dips are noticed to be present in the phase velocity
profiles of fundamental (acoustical) and higher (optical) modes along y ¼ 75� in both the cases of
stress-free isothermal and stress-free thermally insulated, charge-free plate surfaces. Thus, the
various modes of wave propagation are monotonic though attenuated/damped along this
direction of wave propagation. Also, these dips are not observed in any of the curves for various
modes in piezoelectric plate in the absence of thermal and pyroelectric effects. The oscillatory
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behavior is also not observed for thermoelastic plate in the absence of piezoelectric and
pyroelectric effects. Clearly, the presence of these dips in various dispersion curves for the
piezothermoelastic plate is attributed due to the coupling between thermal and electric fields, i.e.
pyroelectric effects. The reduction in the amplitude of vibrations as compared to that of elastic
and piezoelectric plate signifies the impact of energy dissipation due to heat conduction and
pyroelectric effects.
The free surfaces admit a Rayleigh-type surface wave with complex wave number and hence

phase velocity. Consequently, the surface wave propagates with attenuation due to the radiation
of energy into the medium. This radiated energy will be reflected back to the center of the plate by
the lower and upper surfaces. Consequently, the attenuated surface wave on the free surface is
enhanced by this reflected energy to form a propagation wave. In fact, the multiple reflections
between the upper and lower surfaces of the plate form caustics at one of the free surface and a
strong stress concentration arises, due to which the wave field becomes unbounded in the limit
d-N: The unbounded displacement field is characterized by the singularities of circular tangent
functions. Figs. 5 and 6 represent the variation of non-dimensional attenuation coefficient (q) of
the waves with non-dimensional wave number ðxdÞ for acoustic mode of wave propagation in
different directions in a plate with charge- and stress-free, isothermal surfaces. The amplitude of
attenuation coefficient passes through many sign reversals through the thickness of the plate. The
number of such sign reversals is quite high for 30�pyp60� as compared to other directions of
wave propagation. Therefore, the damping effect is more prominent in the considered range of
wave number ðxdÞ along the direction of propagation for 30�pyp60�: From Fig. 6, it is noticed
that attenuation coefficient for skew symmetric mode has quadratic variation at low wave number
ð0pxdp8Þ and then starts oscillating with quite high amplitude along y ¼ 75�: This quantity
performs oscillations with increasing amplitude along other directions of wave propagation for
the considered values of non-dimensional wave number. For the direction y ¼ 45�; the amplitude
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of attenuation is observed to be quite high for the wave number range 4pxdp7 with decreasing
trend on either side of this interval. The variation of attenuation coefficient with wave number for
thermally insulated plate during symmetric mode of wave propagation is similar to that of skew
symmetric mode in isothermal plate except slight change in magnitude, which is clear from Figs. 6
and 7. Fig. 8 represents the attenuation coefficient profile of skew symmetric mode for a thermally
insulated plate. The attenuation curve for y ¼ 75� is almost a straight line indicating that in this
direction attenuation coefficient is non-dispersive in character. In the direction y ¼ 45�; the
magnitude of attenuation coefficient is very large in magnitude in the wave number range
5pxdp7 and negligibly small on either side of this interval. This quantity observes oscillating
behavior with increasing amplitude in other considered directions (y ¼ 30�; 60�). Thus, the
acoustic mode is noticed to be significantly attenuated in space and damped with time for both
cases of charge- and stress-free, isothermal/thermally insulated plate surfaces along y ¼ 30�; 45�

and 60�: Along the direction of propagation y ¼ 75�; the acoustic mode is free from peaks and
dips and hence there is less damping effect. This result agrees with the corresponding result
obtained earlier from the phase velocity profiles.
The amplitude of dilatation for fundamental symmetric and skew symmetric modes in an

isothermal plate with respect to thickness in various directions of wave propagation is represented
in Figs. 9 and 10, respectively. It is seen from Fig. 9 that there is large amplitude of symmetric
dilatation near the upper and lower surfaces of the plate in all directions except for y ¼ 30�; which
is primarily due to the presence of free surfaces because the upper and lower free surfaces give rise
to the caustic effect which results in large-displacement amplitude and consequently to volumetric
deformation (dilatation). Along y ¼ 30� this quantity performs damped oscillations with
maximum amplitude at the center of the plate. For a relatively thicker plate, the caustic effect
becomes less important and the fundamental mode becomes a Rayleigh-type surface wave on the
upper or lower free surface. In this case, one may still call the fundamental mode a Rayleigh-type
surface wave on the free surface, for its amplitude on the free surface is several times of that
elsewhere inside the plate. It is observed from Fig. 10 that there is maximum skew symmetric
dilatation at the upper and lower surfaces of the plate and less deformation takes place at the
center of the plate in all the directions of wave propagation. However, along the directions
y ¼ 30� and 45�; there is negligible variation in skew symmetric dilatation with plate thickness.
The comparison of Figs. 9 and 10 reveals that the symmetric dilatation is noticed to be more
dominant than the skew symmetric one, in this case.
The electric potential change along the plate thickness for fundamental symmetric and skew

symmetric mode is plotted in Figs. 11 and 12. It is evident from Fig. 11 that maximum electric
potential change is noticed at the upper and lower surfaces of the plate. Inside the plate electric
potential change is very small and fluctuating. The variation of amplitude of electric potential
during skew symmetric mode of vibration with plate thickness is shown in Fig. 12 for charge- and
stress-free isothermal surfaces of the plate. Along y ¼ 300 and 45�; the variation is almost linear
with zero value at the center of the plate. But along the directions y ¼ 60� and 75�; the absolute
value of skew symmetric electric potential increases in 0ox3o0:4 and decreases for 0:4ox3o0:7
before it attains maximum value at the plate surfaces after a sharp increase. The symmetric
electrical potential change is observed to be quite dominant and hence significant amount of
mechanical and thermal energy gets converted into electrical energy during the propagation of
mechanical or thermal disturbance in the present situation.
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The symmetric temperature change with plate thickness is shown in Fig. 13 for isothermal
boundaries of the plate. No temperature change is noticed at lower and upper surfaces of the
plate, which is consistent with the boundary conditions. The symmetric temperature change is
observed to behave like a damped oscillator on either side from the center of the plate where its
amplitude is maximum. Moreover, the damping effect is quit high along the direction y ¼
30�; 60�; moderate for y ¼ 45� and observed to be least along y ¼ 75�: Thus, the effect of heat
dissipation has less effect on wave propagation along the direction y ¼ 75� than in other
directions of wave propagation in the instant case. Fig. 14 represents the antisymmetric
temperature change with plate thickness in a charge- and stress-free isothermal plate. The skew
symmetric temperature change is zero at the center of the plate and also at the plate surfaces. The
latter is consistent with boundary condition. The skew symmetric temperature change is noticed
to be negligibly small, which varies almost linearly along the directions y ¼ 30� and 45�; thereby
establishing that this quantity is almost non-dispersive in character in these directions. Along
y ¼ 60� and 75�; the absolute value of skew symmetric temperature change increases
monotonically for jxjp0:8 and decreases for jxj > 0:8: From Figs. 13 and 14, it is clear that
symmetric temperature change is more significant than the skew symmetric one in the present
case. The velocity profile along the direction y ¼ 75� is monotonically decreasing without peaks
and dips, which is due to coupling between thermal and electric fields. Also, along this direction,
there is minimum effect of pyroelectric fields as can be seen from the curves for dominant
symmetric temperature and electric potential change in this direction.

9. Conclusions

Secular equations for symmetric and skew symmetric modes of vibration for piezothermoelastic
Lamb waves in a plate have been derived for different boundary conditions. It is found that purely
transverse (SH) wave decoupled from the rest of the motion and remains independent of
piezoelectric, pyroelectric and thermal effects. From the dispersion curves, it is observed that
decrease in phase velocity with wave number is oscillatory except along the direction y ¼ 75�: The
acoustic mode of wave propagation is observed to be almost non-dispersive along the direction
y ¼ 75� of wave propagation. In all other directions, the decrease in velocity performs damped
oscillations, which die out with increase in wave number. The lowest mode (acoustic mode) is
most fluctuating. The oscillatory behavior of phase velocity with wave number seems to disappear
with growing order of modes. This damping effect is not observed in thermoelastic and
piezoelectric elastic plates, although the phase velocity ðv=

ffiffiffiffi
c2

p
Þ profiles are attenuated. At short

wavelength limits, the velocity of symmetric and antisymmetric modes of vibration asymptotically
approaches the Rayleigh wave velocity. The attenuation coefficient profiles are found to increase
with oscillating magnitude with wave number and have a number of peaks and dips. This
establishes the effect of damping due to heat dissipation because of coupling between thermal and
electric fields, viz. pyroelectric effects. But no such peaks and dips are observed in the velocity
profile along the direction y ¼ 75�: This indicates that along this direction there is minimum effect
of pyroelectric fields, as can also be seen from the curves for dominant symmetric temperature and
electric potential change in this direction. The crossover points between various curves
corresponding to same mode of propagation in different directions physically indicate that at a
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particular wavelength, the mechanical/thermal/electrical energy may be exchangeable between the
corresponding directions of wave propagation in the same mode. Unlike elastic, thermoelastic and
piezoelectric elastic plate cases, the symmetric and skew symmetric modes in a piezothermoelastic
plate are not very clearly distinguishable and the presence of peaks and dips is observed in various
dispersion curves and attenuation profiles. This happens because of the pyroelectric effect as such
as a phenomenon is not noticed in the absence of these effects in elastic, thermoelastic and
piezoelectric plates. It is also observed that as the thickness of the piezothermoelastic plate
increases, the phase velocity decreases in all the directions of propagation, because with increase
in thickness of the plate, the coupling effect of various interacting fields also increases, resulting in
lower phase velocity. It is also noticed that the Rayleigh wave velocity is reached at a lower wave
number as the thickness increases, because the transportation of energy mainly takes place in the
neighbourhood of the free surfaces of the plate in the considered case. The amplitudes of
dilatation, electric potential and temperature change have also been computed and are shown
graphically. The symmetric dilation, electric potential and temperature change are found to be
more dominant than skew symmetric one in cadmium-selemide material plate. The dilatation is
found to be maximum at the surfaces as compared to the center of the plate except along y ¼ 30�:
This is primarily due to the presence of free surfaces which give rise to caustic effect. The electric
potential is noticed to be maximum at the surfaces of the plate, which is physically relevant. The
temperature change in the case of stress- and charge-free isothermal plate is found to be zero at
the surfaces of the plate and the damping effect due to pyroelectric effect is found to be quite high
along y ¼ 30�; 60�; moderate along y ¼ 45� and least for y ¼ 75�; from the temperature change
profile.
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Appendix A

The coefficients ai; Ai; i ¼ 1; 2; 3; in Eq. (15) and RðmqÞ; RiðmqÞ; i ¼ 1; 2; 3 in Eq. (17) are
given as

a1 ¼
Ps2 � Jc2 þ %Ec1c2s2 þ %EZ ð2c2e2 � 2c3e1 þ e21c1 þ 1Þs2 � c2

� �
c1c2 þ %EZc2

;

a2 ¼
%EðPs2 � Jc2Þ þ ðs2 � c2Þðc2s2 � c2Þ þ %EZ½ðe21c2 þ e22c2 � 2c3e1e2Þs4 � e21s

2c2 þ 2e2s
2ðs2 � c2Þ�

c1c2 þ %EZc2
;

a3 ¼
s2ðs2 � c2Þ %Eðc2s2 � c2Þ þ %EZe22s

2
� �
c1c2 þ %EZc2

;
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A1 ¼
E1ðP0s2 � J 0 %c2Þ þ %%EC1C2s

2 þ %EZ ð2C2 %e2 � ðE þ 1Þ%e1C3 þ %e21C1 þ E2Þs2 � E2 %c2
� �� �

C1C2E1 þ %EZE2C2
;

A2 ¼
%%Es2ðP0s2 � J 0 %c2Þ þ E1ðs2 � %c2ÞðC2s

2 � %c2Þ þ %EZ ð%e21C2 þ %e22C2 � 2C3 %e1 %e2Þs4 þ 2E %e2ðs2 � %c2Þs2 � %e21s
2 %c2

� �� �
C1C2E1 þ %EZE2C2

;

A3 ¼
s2ðs2 � %c2Þ %EZ %e22s

2 þ %%EðC2s
2 � %c2Þ

� �
C1C2E1 þ %EZE2C2

;

RðmqÞ ¼ � EPs c3ð %b%EZ � pÞ þ ð %bþ pc1Þe1 � c1%EZ � 1
� �

m4
�

þ c3ð %b%EZ%E� pe2Þ þ e1ðpc2 þ %be2Þ � 2e2 � %EZ %Ec1 þ c2ð Þs2 � ðpe1 � %EZÞc2
� �

m2

�s2 ð%EZ%Ec2 þ e22Þs
2 � %EZ%Ec2

� ��
;

R1ðmqÞ ¼ EPmq c2ð %b%EZ � pÞm4
�

þ %b%EZð%Ec2 þ 1Þ þ e21 %b� pð1þ c2e2 � c3e1Þ � ð%EZc3 þ e1Þ
� �

s2
�

�ðb%EZ � pÞc2
�

m2

þs2 ðs2 � c2Þð %b%EZ%E� pe2Þ � ðc3%EZ%Eþ e1e2Þs2
� ��

;

R2ðmqÞ ¼mq ðpc1 þ %bÞc2m4 þ pðPs2 � Jc2Þ þ %bðs2 � c2Þ þ ðe1c1 � c3 þ %be2c2 � %bc3e1Þs2
� �

m2
�

þðs2 � c2Þ ðpc2 þ %be2Þs2 � pc2
� �

þ ðe1c2 � c3e2Þs4 � e1c
2s2

�
;

R3ðmqÞ ¼ EP c2ð1þ %EZc1Þm6 þ � c3ðc3%EZ þ e1Þ þ e1ðc3 � e1c1Þ
� �

s2 þ ð%Ec1 þ 1Þðs2 � c2Þ
��

þc2 c1%EZ%Eþ c2%EZ þ 2e2Þs2 � %EZc2
� ��

m4

þ �c3ðc3%EZ%Eþ e1e2Þ þ e1ðe1c2 � e2c3Þ
� �

s4
�

þ c2s
2
%EZ%Eðc2s2 � c2Þ þ e22s

2
� �

þ ðs2 � c2Þ ðc1%EZ%Eþ c2%EZ þ 2e2Þs2 � %EZc2
� �

�e21c
2s2

�
m2

þ ðs2 � c2Þs2 %EZ%Eðc2s2 � c2Þ þ e22s
2

� ��
;

where

C1 ¼
ðc1 þ E %b2Þ
1þ E

; C2 ¼
c2

1þ E
; C3 ¼

c3 þ E %b
1þ E

; %e1 ¼
e1 � Ep
1þ E

; %e2 ¼
e2

1þ E
;

E ¼
ð1� E %bpÞ
1þ E

; %%E ¼
%E

1þ E
; E1 ¼

ð1� Ep2=Z3Þ
1þ E

; %c
2 ¼

c2

1þ E
;

P ¼ c1 þ c22 � c23; J ¼ c1 þ c2; P0 ¼ C1 þ C2
2 � C2

3 ; J 0 ¼ C1 þ C2;

F ¼
ð1þ EÞ3C2ðC1E1 þ %EZE2Þ

c2ðc1 þ %EZÞ
:
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